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Abstract

When assessments are primarily used to measure change over time, it is important to evaluate 

items according to their sensitivity to change, specifically. Items that demonstrate good sensitivity 

to between-person differences at baseline may not show good sensitivity to change over time, and 

vice versa. In this study, we applied a longitudinal factor model of change (LFMC) to a widely-

used cognitive test designed to assess global cognitive status in dementia, and contrasted the 

relative sensitivity of items to change. Statistically-nested models were estimated introducing 

distinct latent factors related to initial status differences between test-takers and within-person 

latent change across successive time points of measurement. Models were estimated using all 

available longitudinal item-level data from the Alzheimer’s Disease Assessment Scale-Cognitive 

section (ADAS-Cog), including participants representing the full-spectrum of disease status who 

were enrolled in the multi-site Alzheimer’s Disease Neuroimaging Initiative (ADNI). Five of the 

thirteen ADAS-Cog items demonstrated noticeably higher loadings with respect to sensitivity to 

change. Attending to performance change on only these five items yielded a clearer picture of 

cognitive decline more consistent with theoretical expectations in comparison to the full thirteen-

item scale. Items that show good psychometric properties in cross-sectional studies are not 

necessarily the best items at measuring change over time, such as cognitive decline. Applications 

of the methodological approach described and illustrated in this study can advance our 

understanding regarding the types of items that best detect fine-grained early pathological changes 

in cognition.
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Introduction

Neurocognitive testing is a vital component to early detection, accurate diagnosis, and the 

monitoring of disease progression and evaluation of treatment effects. The measurement of 

cognitive abilities through testing is also critical in assessing the effectiveness and clinical 

meaningfulness of symptomatic and disease-modifying clinical trials. Accurate clinical 

diagnosis and classification of individuals into the correct disease status depends, to some 

extent, on the validity of the cognitive test score interpretations. The validity of cognitive test 

scores can be measured by their capacity to detect patterns of cognitive deficits that might be 

indicative of abnormal decline (Bondi et al., 1994; Bondi et al., 1995; Salmon & Lange, 

2001). It is important to distinguish between pathological cognitive decline or “impairment” 

and normal (non-pathological) age-associated cognitive decline. The first can be measured 

by performance on cognitive tests well below normative standards while the latter refers to a 

change from baseline or expected ability compared to established age-group norms for the 

test (Slick, 2006). In either case, it is fairly standard to use 1 to 1.5 SD change from 

estimated baseline or previous performance as the marker of a meaningful “change”.

Outcome measures that detect subtle and fine changes over time in cognitive function are 

undoubtedly useful to enhance our understanding of decline in cognition due to disease 

progression and to accurately assess the clinical benefits of therapeutic interventions. 

Optimally-developed cognitive measures that are sensitive to the early emergence of clinical 

symptoms may also prove to be highly associated with underlying brain pathology providing 

strong evidence of biomarker validation (Sperling et al., 2011). Consequently, 

neuropsychological outcome measures that capture change and reliably detect “true” 

residual cognitive function as a clinical indicator of remaining intact cerebral architecture (or 

brain structure) are as important as understanding the clinical effects of underlying 

pathology (Bussire et al., 2003; Esiri & Chance, 2012). Several recent publications have 

demonstrated that improved cognitive composite scores using multivariate machine learning 

approaches to weight individual test items (Llano, Laforet, & Devanarayan, 2011) or 

combining items from different scales (Skinner et al., 2012) can perform as well as or better 

than putative neuroimaging or cerebrospinal fluid (CSF) biomarkers in predicting conversion 

to dementia.

The utility of a cognitive test primarily used to measure change over time can be evaluated 

in terms of the differential contribution and sensitivity of individual items to change. Items 

in cognitive assessment instruments that demonstrate good psychometric properties and 

sensitivity to between-person baseline or cross-sectional differences may not show as much 

sensitivity to change over time. The converse may also be true. Concerns about accurate test 

scoring, appropriate methodology for analyzing test score data, and optimal selection of 

items to assess cognitive and functional abilities for disease prognosis may explain the 
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increasingly popular application of advanced latent variable modeling or item response 

theory (IRT) methodology in health sciences and aging research (e.g., Crane et al., 2008; 

Flynn, Dombeck, DeWitt, Schulman, & Weinfurt, 2008; Fries, Bruce, & Cella, 2005; 

Mungas, & Reed, 2000; Mungas, Reed, & Kramer, 2003; Proust-Lima, Amieva, Dartigues, 

& Jacqmin-Gadda, 2007; Salsman et al., 2014). In IRT modeling, item fitness is generally 

evaluated on an item-by-item basis using the item responses across all test takers. The 

selection of candidate items for test assembly is generally guided by item properties such as 

item difficulty or sensitivity to discriminate between individuals with different levels of the 

underlying trait measured by the test. When such tests are ultimately used to study change 

over time, it is often implicitly assumed that the change that occurs is best understood as 

change in the same latent trait that distinguished individuals at baseline. However, the 

introduction of different types of latent variables in latent variable models makes it possible 

to test this assumption. If violated, the model can also provide a basis for separate 

evaluations of individual items according to their relative sensitivities to between- and 

within-person (change) factors, which can be valuable in identifying items that increase the 

usefulness and responsiveness of neuropsychological and neurobehavioral assessments 

designed to measure change. Such analyses provide both theoretical and practical value in 

the design and analysis of scale instruments that may seek to study both aspects of cognitive 

performance in an individual.

Meredith and Horn (2001) proposed a longitudinal factor model of change (LFMC) 

containing specific latent factors related to baseline cognitive status differences between test 

takers and latent change across the measurement time points. A key advantage of structural 

factor models, such as the LFMC, is the ability to sequentially impose constraints on the 

parameters of interest allowing the study of the invariance of specific covariances and/or 

factor loadings of items in a test over time (McArdle, 2007). Standard measurement 

equivalence or measurement invariance analyses, as described in Meredith (1993), can be 

applied to the model allowing the detection of individual test items that display significantly 

greater (or lesser) sensitivity to change as compared to their sensitivity to initial differences.

In theory, the LFMC model thus also provides a mechanism by which the lack of 

measurement invariance for a given assessment scale over time can be explained. Traditional 

forms of measurement invariance analysis start with an attempt to confirm that a scale 

measures the same latent trait over time. As this assumption is frequently violated, it 

becomes important to not only understand why, but to introduce methodological alternatives 

that allow such changes to occur. By introducing separate between- versus-within person 

latent factors, the LFMC model provides such a mechanism. The purpose of this study was 

to illustrate the application of the LFMC modeling framework to identify items most 

sensitive to change across time using data from the Alzheimer’s Disease Assessment Scale-

Cognitive section (ADAS-Cog) (Rosen, Mohs, & Davis, 1984). The ADAS-Cog is a rating 

instrument commonly used to measure cognitive dysfunction in clinical trials and for 

detecting, tracking, and staging AD (e.g., Aisen et al., 2008; Feldman et al., 2010; Kurz, 

Farlow, Quarg, & Spiegel, 2004; Rafii et al., 2011; Sano et al., 2011; Shah et al., 2013; 

Suzuki et al., 2013). ADAS-Cog scores are obtained from written and verbal responses to 

items measuring key cognitive domains typically affected in AD including verbal episodic 

memory, language, comprehension, and ideomotor praxis.
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Method

Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The primary goal of ADNI 

has been to test whether imaging and other biological markers and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive 

and specific markers of very early AD progression is intended to aid researchers and 

clinicians to develop new treatments and monitor their effectiveness as well as lessen the 

time and cost of clinical trials. To date ADNI protocols have recruited over 1,400 adults, 

ages 55 to 90, clinically diagnosed as cognitively normal (CN), MCI, or AD. For up-to-date 

information on ADNI protocols, see www.adni-info.org.

The population for the present study consisted of all participants with available item-level 

data on the ADAS-Cog up to the 24-month follow-up visit. A period of two years at one year 

intervals was considered a reasonable amount of time to study cognitive decline in this 

sample (see, e.g., De Jager, Blackwell, Budge, & Sahakian, 2005; Marquis et al. 2002). The 

sample included individuals across the full spectrum of disease status, from CN, early and 

late MCI, and early AD. Details on the study protocol for the clinical diagnosis of 

participants into disease categories can be found at http://www.adni-info.org/Scientists/

ADNIStudyProcedures.aspx. Briefly, clinical diagnosis is established in a multi-step process 

combining results from neuropsychological, neuropsychiatric, and functional tests and 

clinical judgement based on published criteria for dementia. As shown in Table 1, the 

analytical sample for fitting the LFCM model included 1,217 older adults diagnosed at study 

entry as CN (N = 343), MCI (N = 764), and AD (N = 110). This represented 82% 

(1,217/1,480) of the total sample recruited in the ADNI studies at the time the data for the 

present study were downloaded. At month 12, we retained 90% of the analytical sample 

(1,094/1,217), and at month 24, roughly 60% (733/1,217) had item-level data on the ADAS-

Cog-13. Reasons for lost to follow-up or missing appointments in ADNI vary by biomarker. 

The most common reasons reported in the literature are death, cognitive impairment, 

depression, and other health-related complications (Lo et al., 2012). Participants in the 

current study were mostly male (57%), ranged in age from 55 to 91 years (M = 73, SD = 

7.08), and reported an average of 16.11 years of education (SD = 2.75; range, 6–20 years). 

Table 1 also reports global cognitive function at baseline measured by the Mini Mental State 

Examination (MMSE; Folstein, Folstein, & McHugh, 1975) and the Clinical Dementia 

Rating Scale Sum of Boxes (CDR-SB; Morris, 1993).

Instrument

The classic or standard ADAS-Cog (Rosen, Mohs, & Davis 1984) includes 11 items and the 

revised and expanded ADAS-Cog-13 (Mohs et al., 1997) includes two additional items 

measuring visual attention and concentration (digit or number cancellation) and delayed 

verbal recall. Total test scores may range from 0 to 70 in the standard version of the test and 

from 0 to 85 in the expanded version with lower scores indicating better cognitive 

performance. Items were scored following the test developers guidelines. We studied item 
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sensitivity to change using the expanded version of the scale denoted here as ADAS-Cog-13. 

Table 2 lists the 13 items by cognitive domain and scoring scheme.

The ADNI study administers alternate test forms at each visit in which only the word lists 

are varied to minimize practice effects. To insure unambiguous interpretation of changes in 

the ADAS-Cog-13 between the studied time points, we conducted longitudinal measurement 

invariance tests over a 24-month interval to determine whether the test items assessed the 

same attribute across time (Horn, & McArdle, 1992; Meredith, 1993). Longitudinal 

invariance was evaluated using a multi-group confirmatory factor analysis within the 

framework of structural equation modeling (SEM; Meredith, 1993; Schaie, Maitland, Willis, 

& Intrieri, 1998). We assessed the degree to which ADAS-Cog-13 factor structure 

(configural invariance), factor loadings (metric invariance), factor variance/covariance and 

item means (scalar invariance), and item error variances were similar across time. The 

results provided evidence in support of the test’s longitudinal factorial invariance over the 

24-month period. (Results are available upon request from the first author.) Means and 

standard deviations of the ADAS-Cog-13 at baseline are also reported in Table 1.

The Longitudinal Factor Model of Change

Using item-level cognitive outcome scores, the LFMC model was applied incorporating 

specific latent factors to measure cross-sectional differences in cognitive functioning 

(between participants at baseline) and the sensitivity to capture within-person change in 

cognitive functioning over time. Assuming that cognitive functions are repeatedly measured 

across t = 3 time points, the general longitudinal factor model of change is specified as:

where xij1, xij2, and xij3 denote the item score for person i on item j across t time points, 

denoted here as 1, 2 and 3, respectively; fi1, fi2, and fi3 are latent factors denoting the 

baseline cognitive status (baseline factor 1), cognitive change from t = 1 to t = 2 (change 

factor 2), and cognitive change from t = 2 to t = 3 (change factor 3) for person i, respectively. 

In this model specification the baseline factor 1, f1, represents a factor reflecting differences 

between persons in baseline cognitive functioning, while change factor 2, f2, and change 

factor 3, f3, represent how an individual has changed across the two respective one-year time 

intervals. The parameters λj 1, λj 2, and λj 3 thus indicate the initial status and change status 

loadings (with respect to two time intervals) for item j, respectively. Finally, eij1, eij2, and eij3 

are the respective error terms reflecting the uniqueness variance for each item j at a given 

time point t.

In this study, we evaluated the general unrestricted model, denoted as the Varying Factor 

Model, which allows all factor loadings to differ across time (λj1≠λj2≠λj3 ), against 

restricted models in which λj1 = λj2 = λj3 for all items (denoted as the Constant Factor 

Model), and where only λj2 = λj3 for all items (specified as the Baseline and Change Factor 

Model). It is important to note that the Constant Factor Model is the most restrictive of the 
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three models and is statistically equivalent to a model that assumes measurement invariance 

in a single latent trait over time. The Varying Factor Model is the least restrictive model 

allowing not only differences in item loadings across the baseline and change factors but 

also between the two factors representing change. The Baseline and Change Factor Model 

allows the item loadings to differ between the baseline and change factors but assumes the 

change factors are invariant. Additionally, all the models included covariance terms between 

factors, which allows us to see (and account for) the potential relationship between cognitive 

functioning at baseline and subsequent declines.

The three models were compared to gather statistical evidence regarding the potential 

differential sensitivities of the items across latent factors. In the application of the LFMC 

model to the ADAS-Cog item scores illustrated here, we viewed baseline factor 1 (fi1) as 

representing the level of cognitive functioning observed at time 1. In this case, an item’s 

loading (λj1) indicates how well the item measures the participants’ cognitive status at t = 1, 

while λj2 and λj3 indicate how well it measures change from t=1 to t = 2 and from t=2 to t = 

3, respectively. Comparing models that differ in the nature of constraints imposed on their 

factor loadings within the LFMC is conceptually akin to confirmatory factor analysis 

approaches to establishing measurement invariance (Meredith, 1993; Millsap & Meredith, 

2007; Reise, Widaman, & Pugh, 1993). Since the three models of interest possess a fully-

nested structure in terms of the nature of the constraints imposed, model comparison can be 

conducted via either chi-square difference testing or through use of standard model 

comparison and goodness-of-fit criteria applied in confirmatory factor analysis. The latter 

criteria included the Akaike information criterion (AIC; Akaike, 1974), Bayesian 

information criterion (BIC; Schwarz, 1978), sample-size-adjusted BIC (SABIC; Sclove, 

1987), comparative fit index (CFI; Bentler, & Bonett, 1980), Tucker-Lewis index (TLI; 

Tucker, & Lewis, 1973), and root mean square error of approximation (RMSEA; Browne & 

Cudeck, 1992; Steiger, & Lind, 1980). Model comparison provides the basis for claims that 

item performance may or may not vary in relation to between-person versus within-person 

factors.

Additional Analyses

To further validate the best model obtained in the previous step and to illustrate the value of 

distinguishing among the 13 ADAS-Cog items in their capacity to capture cognitive decline, 

we compare the observed mean item scores at each time point using a subset of the ADAS-

Cog items found to be maximally sensitive to change over time. We also compared the 

average growth estimates (i.e., rate of change) obtained from fitting separate linear latent 

growth curve models (LGCM) (Bollen & Curran, 2006) using the total score of the full test 

versus those items found most sensitive to change. To facilitate the comparison of the 

sensitivities of different sets of items in capturing change, these analyses were conducted 

using cases with complete values in all items across all the observation time points 

evaluated. This produced an analytical sample of 491 cases with non-missing data. All 

models were estimated using MPlus 7.31 (Muthén, & Muthén, 1998–2015). All descriptive 

statistics and graphics were obtained with the programming language R, Version 3.2.0 (R 

Core Team, 2015).
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Results

Item sensitivity using the Longitudinal Factor Model of Change

Chi-square difference ( ) tests (also known as likelihood ratio tests) were used to 

compare the fit of the competing nested models. The hypothesis test comparing the Baseline 

and Change Factor Model vs the Varying Factor Model was not rejected, 

, p = .77, suggesting that the more parsimonious model (Baseline 

and Change Factor Model) was preferred. Conversely, the test comparing the Baseline and 

Change Factor Model with the Constant Factor Model rejected the null hypothesis 

, p < .001, implying that the model containing more freely 

estimated parameters (in this case the Baseline and Change Factor Model) provided a better 

fit than the Constant Factor Model. A summary of the fit produced by each sequential 

LFMC model using the specified criteria is shown in Table 3. With the exception of the AIC, 

which is known to favor more complex models (West, Taylor, and Wu, 2014), the Baseline 

and Change Factor Model outperformed the Constant and the Varying Factor models. 

Therefore, the Baseline and Change Factor Model was selected as the most appropriate 

model in our study. As change factors 2 and 3, respectively, represent the sensitivity to 

capturing an individual’s cognitive change from time 1 to time 2 and time 2 to time 3, the 

results suggest that this sensitivity is relatively stable over time (i.e., λj2=λj3 in the Baseline 

and Change Factor Model), but different from the relative sensitivity to baseline differences 

in cognitive functioning.

Tables 4 and 5 display the standardized estimates of item loadings obtained from the 

baseline factor 1 and growth or latent change factors 2 and 3 for all items in the ADAS-

Cog-13. In the left columns of both tables, we can see that item 1 (word-recall-trial 1 to 3), 

item 4 (delayed word recall), and item 8 (word-recognition) show the largest loadings with 

respect to Factor 1, which suggests that they are optimal in discriminating participants’ 

cognitive levels in their initial cognitive status. In contrast, items 2 (commands), 9 

(remember instructions), and 12 (spoken language) were not as discriminating. However, 

items 2 (commands), 9 (remember instructions), 10 (comprehension), 11 (word finding), and 

12 (spoken language) had the largest loadings on the change factors 2 and 3. This indicates 

their relatively stronger sensitivity to an individual’s change or decline in cognitive ability 

across the three time points. With the exception of item 2 (commands), all the items 

identified as most sensitive were clinician-rated items measuring language (items, 2, 10, 11, 

and 12) and memory (item 9) abilities. Interestingly, items 1 (word-recall-trial 1 to 3), 3 

(copy geometric forms), 4 (delayed word recall), and 8 (word-recognition), designed to 

assess predominantly memory skills, had the lowest loadings on change factors 2 and 3, 

suggesting that among the 13 items on the test, these items showed the least sensitivity to 

changes across time.

Figure 1 illustrates the relationship between item factor loadings and differential functioning 

across the two types of estimated latent factors. For example, items 1 (word-recall), 4 

(delayed word recall), and 8 (word-recognition) perform best at distinguishing the cognitive 

functioning between individuals at their baseline status, but show the least sensitivity to 

capture the individual’s cognitive decline over time. On the other hand, items 9 (remember 
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instructions), 10 (comprehension), and 12 (spoken language) show the greatest sensitivity to 

within-individual change in cognitive ability longitudinally, but they are not as sensitive as 

the other items in measuring the initial cognitive level. If we apply, for example, 0.35 as a 

minimum factor loading “rule of thumb” for item selection (cf; Stevens, 2009), we can 

identify some items that perform relatively well both in sensitivity to baseline differences 

and change across time. That is, if an item has a factor loading greater than 0.35 on both 

latent factors, then it can be viewed as a good item in terms of capturing both initial 

differences and change over time. Examples of such items in the ADAS-Cog 13 are items 5 

(naming objects) and 7 (orientation). In general terms, these findings suggest that items that 

appear to function well in distinguishing baseline between-person differences in the 

underlying trait measured by the instrument might not necessarily function as well for 

detecting within-person differences. In fact, we found a strong negative correlation between 

the baseline factor 1 and the change factor 2, r (11) = −0.85, p < .001.

Comparative Analyses

Table 6 shows the observed mean item scores at each time interval for the following three 

groups of ADAS-Cog-13 items: 1) a five-item group containing the items demonstrating 

greatest sensitivity to change, 2) the remaining eight-item group of non-selected items, and 

3) the full thirteen-item group. As indicated above, the five-item group was comprised of the 

items with the largest loadings on change factor 2, and hence had the greatest sensitivity to 

detect cognitive decline. These included commands, remember instructions, comprehension, 

word finding, and spoken language. Figure 2 depicts the trends of the observed mean scores 

over the three data collection time points with a 95% confidence interval. We can see that 

only the trajectory of the five-item total score outcome displayed a clear increasing trend 

(greater cognitive impairment) across all three time points, consistent with a linear cognitive 

decline progression. Conversely, mean scores across time based on the thirteen- and eight-

item outcome measures show an inconsistent pattern, initially showing improvement from t 
= 1 to t = 2, and then a decline from t = 2 to t = 3. This finding may simply be due to noise 

introduced by items that are not sensitive to within-person change. However, it is also 

possible that such results reflect some form of practice effects on particular items; effects 

that potentially become offset by cognitive declines at later time points. This interpretation 

seems particularly plausible given that the pattern of improvement is most noticeable for the 

CN population, less so for the mild MCI group, and not at all for the AD group, where the 

effects of actual cognitive decline have likely offset any benefit from practice.

A summary of the estimated average linear growth parameters (i.e., mean slope or rate of 

change) obtained from an unconditional LGCM applied separately to the five-, eight-, and 

thirteen-item longitudinal outcome measures is presented in Table 7. To facilitate 

comparison across item groups, the table shows the standardized average growth slope 

estimates. The results again support the five-item aggregate score as the most sensitive 

measure of change. The estimated growth parameter for the five-item outcome measure was 

the highest, also yielding the smallest standard error and most significant p-value.
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Discussion

The purpose of this study was to describe and illustrate the application of the LFMC 

framework to serial item-level data from the ADAS-Cog-13 to examine the relative 

sensitivities of items to detect cross-sectional differences in cognitive function between 

participants and within-person change in cognition over time. The model identified five 

items indicating a progressive decline across the three time points. To validate the LFMC 

results we used longitudinal aggregate scores as outcomes to compare the performance of 

the five model-selected items in capturing change to that of non-selected items and all 

thirteen items in the test. We also used a LGC modeling approach to estimate and compare 

growth factors across item-groups. These analyses supported the superiority of longitudinal 

aggregate scores obtained from the five items showing greater sensitivity to change, as the 

entire collection of 13 items failed to display a progressive decline. Most factor analytic 

studies of longitudinal measures attend solely to between-person factors when interpreting 

what the items are measuring. One limitation of this class of analyses is that the frequently 

observed lack of measurement invariance with respect to such factors is difficult to explain. 

An appealing feature of the model studied in this paper is that it provides an explanation for 

the lack of measurement invariance over time, namely that items are disproportionately 

sensitive to cognitive decline.

As evidenced by numerous publications, there is an urgent need to develop cognitive 

outcome measures that are sensitive in revealing early synaptic and neuronal dysfunction 

associated with AD pathology (Becker, Greig, & Giacobini, 2008; Broich, Schlosser-Weber, 

Weiergraber, & Hampel, 2012; Robert et al., 2010; Sperling et al., 2011). Optimized 

measures of different cognitive processes are a necessary component of clinical trials of 

drug-modifying therapies for accurate assessment of treatment benefits. More sensitive 

primary or co-primary cognitive outcomes may also lower the cost and enhance the 

efficiency of clinical trials by reducing sample size requirements and increasing power to 

detect significant differences at both the individual and aggregate sample levels. The 

evaluation protocol of items for cognitive tests should involve not only their difficulty level 

and ability to discriminate amongst individuals across the full spectrum of the disease, but 

also the extent to which they are sensitive to detect change over time; especially when the 

objective of the assessment is to measure change and gain better understanding of intra-

individual processes. A latent variable modeling framework which links longitudinal item-

level observations to latent variables or factors allowing the distinction between item 

sensitivity to baseline interindividual differences and intraindividual change provides one 

such tool. We demonstrated that desirable cross-sectional psychometric properties of items 

that made up a test do not necessarily translate into desirable item characteristics for the 

analysis of change.

To some extent, the overall quality of a test to measure change over time stems from the 

quality of its items to detect such change. In close agreement with previous cross-sectional 

studies applying IRT models to the analysis of item-level data from ADAS-Cog (e.g., Benge, 

Balsis, Geraci, Massman, & Doody, 2009; Ueckert, et al., 2014), we found that items 

measuring episodic memory deficits (e.g., word recall, delayed word recall, and word 

recognition) performed very well in differentiating respondents with different levels of the 
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cognitive ability measured by the test. Yet, the performance of the same items relative to 

other items in the test was not as optimal in measuring individual differences in change over 

time. We found that items assessing predominantly language or semantic memory (e.g., 

spoken language, comprehension of spoken language, commands, word finding, and naming 

objects) were much more sensitive or responsive to capturing intraindividual differences in 

change over time than those measuring episodic memory. These results suggest that the 

inclusion of selected items that detect changes in semantic memory may enhance the 

usefulness of a test to identify and track true rate of cognitive decline over time. In fact, 

previous cross-sectional studies (e.g., Welsh, Butters, Hughes, Mohs, & Heyman, 1991; 

1992) have indicated that neuropsychological tests measuring learning and memory are 

highly sensitive for detecting very mild cases of AD, but proved of little value for detecting 

changes in the disease process. In contrast, the authors found that the performance on 

lexical-semantic processing measures was a better indicator of changes in clinical diagnosis 

and disease status. Other studies utilizing longitudinal designs and large community-based 

non-demented samples at study entry (Amieva, et al., 2008; Wilson, Leurgans, Boyle, & 

Bennett, 2011) reported that the first measurable cognitive decline was obtained on cognitive 

tests assessing semantic memory and conceptual formation becoming evident as early as 12 

years before conversion to dementia. Although these studies provide support to our findings 

on the role of semantic memory measures on discriminating disease progression, the focus 

of our analysis was chiefly on identifying specific items in a scale showing the highest 

sensitivity to possibly pathological cognitive changes in the underlying trait measured by the 

scale regardless of the person clinical diagnosis.

More applications and extensions of the LFMC modeling framework exist that may enhance 

the value of this methodology as an effective tool to monitor and assess cognitive changes. 

In this study, we have only considered changes using three waves of data to facilitate the 

introduction and application of the model. For example, items sensitivity to change can be 

extended to longer time intervals to better describe the item ability to sustain such 

sensitivity. Interactions with baseline levels of cognitive functioning can also be 

incorporated into the analysis, given suitable sample sizes for such analysis. This will allow 

the examination of item sensitivity to change conditioned upon varying stages of cognitive 

impairment. These analyses can be applied to a variety of scales measuring a broad range of 

cognitive and functional abilities to study their sensitivity to assess meaningful changes in 

individual and global neurocognitive scores over time. Future work is needed to explore 

further extensions of methodological approaches, such as the LFMC illustrated here, that 

will allow us to use more sensitive measures to detect fine-grained early pathological 

changes in cognition.
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Figure 1. 
Comparison of item loadings across baseline and change factors. The first five panels 

illustrate the loadings for the items showing greater sensitivity to change. The other panels 

compare the loadings for the remaining 8 items in the Alzheimer’s Disease Assessment 

Scale-Cognitive subscale (ADAS-Cog).
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Figure 2. 
Mean score trend across time by item group with 95% confidence intervals (CI) and 

corresponding standard errors (SEs).
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Table 2

ADAS-Cog-13 Items Submitted to Analysis

Item Number in the ADNI Database Cognitive Domain Item Description Range

Item 1 Memory Word-recall-Trials 1 to 3a 0–10

Item 2 Language Following commands 0–5

Item 3 Constructional Praxis Copy geometric forms 0–5

Item 4 Memory Delayed word recall 0–10

Item 5 Language Naming objects 0–5

Item 6 Ideational Praxis Following instructionsb 0–5

Item 7 Orientation Orientation 0–8

Item 8 Memory Word recognition 0–12

Item 9 Memory Remember instructionsb 0–5

Item 10 Language Comprehension of spoken languageb 0–5

Item 11 Language Word finding difficultyb 0–5

Item 12 Language Spoken language abilityb 0–5

Item 13 Attention/Executive Function Number cancellation 0–40

Notes. ADAS-Cog13 = Alzheimer’s disease Assessment Scale-13-item Cognitive Subscale; ADNI = Alzheimer’s Disease Neuroimaging Study.

Items in the ADAS-Cog are also referred to as “tasks.”

a
Range of 0–10 per trial.

b
Clinician rated item.
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Table 7

Standardized Slope Parameter Estimates for the Unconditional LGCM Model by Item Group

Item Group Mean Slope Estimate SE p BIC

5-Item .24 .06 < 0.001 4583.27

8-Item .16 .08 0.037 8752.61

13-Item .20 .06 0.002 9014.26

Note. LGCM = Latent growth curve model; SE = Standard error; BIC = Bayesian Information Criterion.
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